Programming Chemical Reaction Networks in Kaemika

Luca Cardelli, University of Oxford
Future of Computing
2019-07-04 Porto

Install Kaemika

- Android version:
- Search "Kaemika" in the Play Store
- https://play.google.com/store/apps/details?id=co m.kaemika.Kaemika

Kaemika
3
Luca Cardelli Education
[1] PEG13
-T This app is compatible with some of your devices.
Installed

- Windows version (Dropbox): (runs without installation)
- Download \& Unzip: https://www.dropbox.com /s/qxity2e9hw4fw5c /Release.zip
- Run Release\KaemikaWPF.exe

- Windows version (Github, probably need account):
- https://github.com/luca-cardelli/KaemikaXM
- Download \& Unzip
- Run ...\KaemikaXM-master\KaemikaWPF\bin\} Release\KaemikaWPF.exe

Infinite Loop \#1

- The first ever interesting "chemical algorithm" that had nothing to do with actual chemicals

UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS
ACTION.
By ALfrerd J . Lotrus.
Received June $2,1920$.

$$
\begin{aligned}
& x 1->x 1+x 1 \\
& x 1+x 2->x 2+x 2
\end{aligned}
$$

$$
x 2->\# \quad\{1\} / / \text { predator dies }
$$

- First theoretical proof of oscillation, 1920 [Lotka]
- First experimental (accidental) chemical oscillator, 1921 [Bray]
- Ignored until the BZ reaction (accidental) discovery, 1958 [Belousov-Zhabotinsky]
- First non-accidentally-discovered chemical oscillator, 1981 [De Kepper]
- First protein/ATP-only oscillator, 2005 [Nakajima et al.]
- First DNA-only oscillator, 2017 [Srinivas et al.] (a version of Lotka's)

Lotka Volterra

- Try removing the prey (x 1) (set prey reproduction rate, reaction \#1, to 0)
- Try removing the predators (x2) (set predation rate, reaction \#2, to 0)
- Try making predators immortal (set predator dieout rate, reaction \#3, to 0)
- Try doubling the predation rate (prey go down, but predators too!)
- Try doubling the prey reproduction rate (prey go up, but predators go up more!)

Interaction (Android)

Text
Edit Clipboard
Graph Export text
tutorials paste/copy outputs or GraphViz

Interaction (Windows)

tutorial examples import/export special

PID Controller

MATLAB YouTube Video

https://www.youtube.com/watch?v=wkfEZmsQqiA
On/Off Control:

Proportional Control:

Propeller speed $=$ Error * Gain hovering speed $=>$ Error $=/=0$

MATLAB YouTube Video

Proportional + Integral Control:
removes the steady state error (eventually)

but may overshoot:

MATLAB YouTube Video

Proportional + Integral
+Differential
Control:
if the error is decreasing fast a large negative derivative will be added
slowing down the ascent and preventing overshooting

PID: present + past + future

Positive Arithmetic

```
// copy
species a @ 2 M
species a' @ 0 M
report a, a'
a -> a + a'
a' -> #
```

equilibrate for 5
$\partial \mathrm{a}=0$
$\partial a^{\prime}=a-a^{\prime}$
$\partial a^{\prime}=0$ = $a^{\prime}=a$
Try increasing the a level How much longer will it take to reach steady state?

```
```

// add

```
```

// add
species a @ 2 M
species a @ 2 M
species b @ 3 M
species b @ 3 M
species c @ O M
species c @ O M
report a, b, c
report a, b, c
a -> c
a -> c
b -> c
b -> c
equilibrate for 5

```
```

equilibrate for 5

```
```

```
// copy and add
species a @ 2 M
species b @ 3 M
species c @ O M
report a, b, c
a -> a + c
b -> b + c
c -> #
equilibrate for 5
```

$$
\begin{aligned}
& \partial \mathrm{a}=0 \\
& \partial \mathrm{~b}=0 \\
& \partial \mathrm{c}=\mathrm{a}+\mathrm{b}-\mathrm{c} \\
& \partial \mathrm{c}=0 \quad \Rightarrow \quad c=\mathrm{a}+\mathrm{b}
\end{aligned}
$$

Positive Arithmetic

```
//mult
species a @ 2 M
species b @ 3 M
species c @ O M
report a, b, c
a + b -> a + b + c
c -> #
equilibrate for 5
```

$$
\begin{aligned}
& \partial \mathrm{a}=0 \\
& \partial \mathrm{~b}=0 \\
& \partial \mathrm{c}=\mathrm{a} * \mathrm{~b}-\mathrm{c} \\
& \partial \mathrm{c}=0 \quad \Rightarrow \quad \mathrm{c}=\mathrm{a} * \mathrm{~b}
\end{aligned}
$$

```
//div
species a @ 2 M
species b @ 3 M
species c@ O M
report a, b, c
a -> a + c
b + c -> b
equilibrate for 5
```

$$
\begin{aligned}
& \partial a=0 \\
& \partial b=0 \\
& \partial c=a-b * c \\
& \partial c=0 \quad \Rightarrow \quad c=a / b \\
& (b=0 \quad \Rightarrow \quad c \quad->\infty)
\end{aligned}
$$

Differential Signals

But ERRORS in the PID controller can be positive or negative, while concentrations can only be positive.

Solution: encode an integer number as the difference of two natural numbers (concentations)

Without normalization (they keep growing)

// normalization:
// $\mathrm{a}^{+}+\mathrm{a}^{-}$-> \#
equilibrate for 5

With normalization
(we are still producing a^{-}, so it does not go to zero, but it stabilizes)

Addition of Differential Signals

$$
\begin{aligned}
a+b & =\left(a^{+}-a^{-}\right)+\left(b^{+}-b^{-}\right) \\
& =\left(a^{+}+b^{+}\right)-\left(a^{-}+b^{-}\right) \\
& =c^{+}-c^{-}
\end{aligned}
$$

```
species a+ @ 2 M
species a- @ O M
species b+ @ 0 M
species b- @ 3 M
species c+ @ O M
species c- @ O M
report a+ - a-, b+ - b-, c+ - c-
a+
a- -> c-
b-
```

equilibrate for 5

Subtraction of Differential Signals

$$
\begin{aligned}
a-b & =\left(a^{+}-a^{-}\right)-\left(b^{+}-b^{-}\right) \\
& =\left(a^{+}+b^{-}\right)-\left(a^{-}+b^{+}\right) \\
& =c^{+}-c^{-} \\
& =c
\end{aligned}
$$

```
species a+ @ 2 M
species a- @ 0 M
species b+ @ 0 M
species b- @ 3 M
species c+ @ O M
species c- @ 0 M
report a+ - a-, b+ - b-, c+ - c-
la+
lac
equilibrate for 5
```


Multiplication of Differential Signals

$$
\begin{aligned}
a * b & =\left(a^{+}-a^{-}\right) *\left(b^{+}-b^{-}\right) \\
& =a^{+} * b^{+}-a^{+} * b^{-}-a^{-*} b^{+}+a^{-*} b^{-} \\
& =\left(a^{+} * b^{+}+a^{-} * b^{-}\right)-\left(a^{+} * b^{-}+a^{-} * b^{+}\right) \\
& =c^{+}-c^{-} \\
& =c
\end{aligned}
$$

At this point we would want to use some "subroutines", since se have already seen how to multiply and add positive quantities and we need to do a whole bunch of those.

Fortunately we will not need this multiplication for the PID controller, but we will still need to modularize reactions.

```
species a+ @ 2 M
```

species a+ @ 2 M
species a- @ O M
species a- @ O M
species b+ @ O M
species b+ @ O M
species b- @ 3 M
species b- @ 3 M
species c+ @ O M
species c+ @ O M
species c- @ O M
species c- @ O M
equilibrate for 5
equilibrate for 5
...

```
...
```


Modular Chemical Programs

```
function signal(number n) {
    define
        species n+ @ pos(n) M
        species n- @ pos(-n) M
        n+}+\mp@subsup{\textrm{n}}{}{-}-> 
    yield
        [n+, n-]
}
function copy([species a+ a`]) {
    define
        [species b+ b-] = signal(0)
        \mp@subsup{a}{}{+}}\mathrm{ -> a}\mp@subsup{\textrm{a}}{}{+}+\mp@subsup{\textrm{b}}{}{+};\mp@subsup{\textrm{b}}{}{+}-> 
        a- -> a- + b
    yield
        [b+},\mp@subsup{b}{}{-}
}
```

```
function add([species a+ a-], [species b+ b}\mp@subsup{b}{}{-}]) 
    define
        [species c+ c`] = signal(0)
        a}+\mp@code{-> c+};\mp@subsup{\textrm{b}}{}{+}-> c+
        a- -> c'; b- -> c-
    yield
        [c+, c-]
}
function sub([species a+ a`], [species b+ b}\mp@subsup{\textrm{b}}{}{-}])\mathrm{ {
    define
        [species c+ c-] = signal(0)
        \mp@subsup{a}{}{+}}\mathrm{ -> c+; b b- -> c+
        a- -> c'; b+ -> c-
    yield
        [c+, c-]
}
```


Modular Chemical Programs

```
list a = signal(3) // [a+, a']
1ist b = signal(-2) // [b+, b
list d = copy(a) // [\mp@subsup{d}{}{+},\mp@subsup{d}{}{-}]
list c = add(a, b) // [c+, c']
list e = sub(d, c) // [ (e+, e-]
report a(0) - a(1) as "a"
report b(0) - b(1) as "b"
report c(0) - c(1) as "c"
report d(0) - d(1) as "d"
report e(0) - e(1) as "e"
equilibrate for 5
```


PID Controller

Proportional Block

- Amplify the error $\mathrm{E}=\left(\mathrm{E}^{+}-\mathrm{E}^{-}\right)$into $\mathrm{P}=\left(\mathrm{P}^{+}-\mathrm{P}^{-}\right)$by a tunable "gain" Kp

```
//--------------- Proportional Block
network PBlock (species E+ E- P+ P}\mp@subsup{\textrm{P}}{}{-}\mathrm{ , number Kp) {
\begin{tabular}{ll}
\(\mathrm{E}^{+}->\mathrm{E}^{+}+\mathrm{P}^{+}\) & \{precision* Kp \} \\
\(\mathrm{E}^{-}->\mathrm{E}^{-}+\mathrm{P}^{-}\) & \{precision * Kp\} \\
\(\mathrm{P}^{+}->\#\) & \{precision\} \\
\(\mathrm{P}^{-}->\#\) & \{precision\} \\
\(\mathrm{P}^{-}+\mathrm{P}^{+}->\#\) & \{precision\}
\end{tabular}
}
```

You may recognize the pattern:
E^{+}is copied into P^{+}(reaction 1 \& 3)
E^{-}is copied into P^{-}(reaction 2 \& 4)
$\mathrm{P}^{+}-\mathrm{P}^{-}$is normalized (reaction 5)
But the "copying" adds an amplification Kp
(rates of 1 \& 2)

Unit Testing the P-Block

- Change Kp
- Change the "DSignal" function

Integral Block

- Integrate the error $\mathrm{E}=\left(\mathrm{E}^{+}-\mathrm{E}^{-}\right)$into $\mathrm{I}=\left(\mathrm{I}^{+}-\mathrm{I}^{-}\right)$with a tunable "gain" Ki

```
//------------------- Integra1 Block
network IBlock (species E+ E- I+ I-, number Ki) {
    E+ -> E+ + I+ {Ki}
    E- -> E- + I- {Ki}
    I' + I' -> # {precision}
}
```

This is even easier:
E^{+}accumulates into I^{+}(reaction 1)
E^{-}accumulates into I^{-}(reaction 2)
$\mathrm{I}^{+}-\mathrm{I}^{-}$is normalized (reaction 3)

But the "accumulation" adds an amplification $\mathbf{K i}$
(rates of $1 \& 2$)

Unit Testing the I-Block

- Change Ki
- Change the "DSignal" function

Derivative Block

- Differentiate the error $E=\left(E^{+}-E^{-}\right)$into $D=\left(D^{+}-D^{-}\right)$with a tunable "gain" $K d$
//------------------ Derivative Block ----------1

```
species A+, A- @ OM // D block auxiliary species
{precision}
{precision}
{precision}
{precision*precision*Kd}
{precision*precision*Kd}
{precision}
{precision}
{precision*precision*Kd}
{precision*precision*Kd}
    {precision}
\[
\begin{aligned}
& \text { \{precision\} } \\
& \{n r e c i s i o n\}
\end{aligned}
\]
\{precision\}
```

- $\mathrm{E}^{+}, \mathrm{E}^{-}$is copied into $\mathrm{A}^{+}, \mathrm{A}^{-}$
- E^{+}, E^{-}is also copied into D^{+}, D^{-}
- A^{+}, A^{-}is swap-copied (negated-summed) into D^{+}, D^{-}
- So D is the difference of two copies of E taken at different times t and $t+s$
(because E->D is faster than E->A->D)
- Appropriate rates ensure that $D(t)=(E(t)-E(t-s)) / s$
which converges to the deriviative for $s->0$ (where s is a rate)

PID Control of Biochemical Reaction Networks

Max Whiby ${ }^{1}$, Luca Cardelli ${ }^{1}$, Marta Kwiatkowska ${ }^{1}$, Luca Laurenti ${ }^{1}$, Mirco Tribastone ${ }^{2}$, Max Tschaikowski ${ }^{3}$

Derivative Block

- Informal argument
- $\partial \mathrm{A}^{+}=s \mathrm{E}^{+}-s \mathrm{~A}^{+}$
- $\partial \mathrm{A}^{-}=s E^{-}-s A^{-}$
- $\partial D^{+}=k s^{2} E^{+}+k s^{2} A^{-}-s D^{+}-s D^{+} D^{-}$
- $\partial D^{-}=k s^{2} E^{-}+k s^{2} A^{+}-s D^{-}-s D^{+} D^{-}$
- $\partial\left(\mathrm{D}^{+}-\mathrm{D}^{-}\right)=k s\left(s E^{+}-s E^{-}\right)+k s\left(s A^{-}-s A^{+}\right)-s\left(D^{+}-\mathrm{D}^{-}\right)$

```
//----------------- Derivative Block -----------------------
    \mathrm{ species A+},\mp@subsup{A}{}{-}@ @M // D block auxiliary specie species \(A^{+}\)
\(E^{+}->E^{+}+A^{+}\)
\(A^{+}\)
    lol
        M
        {s}
        {s}
        {s*s*}
        {s*s*k}
        {s"s
```

- $\partial\left(D^{+}-D^{-}\right)=k s\left(s E^{+}-s A^{+}\right)-k s\left(s E^{-}-s A^{-}\right)-s\left(D^{+}-D^{-}\right)$
- $\partial\left(D^{+}-D^{-}\right)=k s \partial\left(A^{+}-A^{-}\right)-s\left(D^{+}-D^{-}\right)$
- at "steady state" (when $\left.\partial A^{+}=\partial A^{-}=\partial\left(D^{+}-D^{-}\right)=0\right)$
- $\mathrm{A}^{+}=\mathrm{E}^{+}$
- $A^{-}=E^{-}$
- $D^{+}-D^{-}=k \partial\left(E^{+}-E^{-}\right)$
- (but $\partial\left(D^{+}-D^{-}\right)$may never reach steady state, so this needs a more formal argument)

Unit Testing the D-Block

- Increase the precision (say, to 100) for better fidelity
- Change the function to differentiate
- $2 \star$ time, whose derivative is constant 2
- time^2, whose derivative is 2 (slope 2)
- $\exp ($ time), whose derivative is exp(time)! (STOP it before it crashes!)
- the second derivative of sin(time) by using two D-Blocks

Finally, the whole PID controller

```
//======================================
// PID Controller Block
//========================
network PIDControl1er(
    species R+}\mp@subsup{R}{}{+
    number Kp Ki Kd,
    network Plant){
    species }\mp@subsup{\textrm{E}}{}{+},\mp@subsup{\textrm{E}}{}{-},\mp@subsup{\textrm{P}}{}{+},\mp@subsup{\textrm{P}}{}{-},\mp@subsup{\textrm{I}}{}{+},\mp@subsup{\textrm{I}}{}{-},\mp@subsup{D}{}{+},\mp@subsup{\textrm{D}}{}{-},\mp@subsup{\textrm{U}}{}{+},\mp@subsup{\textrm{U}}{}{-},Y,\mp@subsup{Y}{}{+},\mp@subsup{\textrm{Y}}{}{-}@ O
    PB1ock(E+, E-, P+, P-}, Kp
    IBlock(E+, E-, I', I', Ki)
    DBlock(E+},\mp@subsup{E}{}{-},\mp@subsup{D}{}{+},\mp@subsup{D}{}{-},Kd
    SumBloc(P+},\mp@subsup{\textrm{P}}{}{-},\mp@subsup{\textrm{I}}{}{+},\mp@subsup{\textrm{I}}{}{-},\mp@subsup{\textrm{D}}{}{+},\mp@subsup{\textrm{D}}{}{-},\mp@subsup{\textrm{U}}{}{+},\mp@subsup{\textrm{U}}{}{-}
    Plant(U+, U-, Y)
    DualRail(Y, Y+, Y-)
    SubB1ock(R+},\mp@subsup{\textrm{R}}{}{-},\mp@subsup{\textrm{Y}}{}{+},\mp@subsup{\textrm{Y}}{}{-},\mp@subsup{\textrm{E}}{}{+},\mp@subsup{\textrm{E}}{}{-}
}
```


The Trivial Plant

```
network Plant(species U+ U- Y) {
    U'+
    U-}+Y Y -> U-
}
```

- U^{+}increases the output Y
- U^{-}decreases the output Y
- However it is not symmetrical:
$\partial Y=U^{+}-Y * U^{-}$
so, although we can control the plant, we do not have direct control of Y and the control task is still mildly non-trivial

Testing the Controller

- Oscillating reference signal
- Just click the Play button a few times

The parameters Kp, Ki, Kd are drawn from uniform random distributions.
They can be individually frozen by checking the checkboxes

- Try to find and freeze some good parameters

Testing the Controller

- Constant reference signal
- This is easier

Try changing the parameters by hand in this line (these are already pretty good):

$$
\text { PIDController (R }{ }^{+}, \mathrm{R}^{-}, \mathrm{Y}, 0.1,0.02,0.02 \text {, Plant) }
$$

- Likely, you will need a different set of parameters here.

Biochemical Plant

```
network Plant(species U+ U' Protein) {
    species mRNA @ O M
    species microRNA @ O M
    U' -> U'+ + mRNA
    U- -> U- + microRNA
    mRNA -> mRNA + Protein
    Protein-> #
    mRNA + microRNA -> #
}
// OSCILLATING REFERENCE
number Kp =? uniform (0,2)
number Ki =? uniform(0,2)
number Kd =? uniform(0,2)
DSignal( \(\mathrm{R}^{+}, \mathrm{R}^{-}, \quad\) fun() \(\{1.5+\) in(0.25*time) \(\left.\}\right)\) PIDController ( \(\mathrm{R}^{+}, \mathrm{R}^{-}\), \(\left.\mathrm{Y}, \mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}, \mathrm{Plant}\right)\)
```


- Random sampling: Not so easy!

Biochemical Plant - my PD strategy

- 1. Adjust Kp until the amplitudes match (with Ki, Kd zero)
- 2. Adjusting Ki does not seem to help at all, leave it at zero

- 3. Adjusting Kd gives better results to put the oscillation in phase

Automatic Parameter Search

- Kaemika has a multi-dimensional gradient descent search (the "argmin" primitive, implementing the BFGS algorithm)
- Gradients (partial derivatives) must be provided for Kp, Ki, Kd; see the "PIDController Optimization" tutorial about how to do that

Was asked to zero-out error already at time 20. So it overshoots a bit to get there in time. It is using each of P, I, and D .

Found (local) minimum in only 5 tries.

Chemical Perceptron

```
species a @ 0.01 M
number bias = 0.3
number pw = 1.1
number nw = 0.9
species exc @ 1.5 M
species inh @ 0.4 M
a + a -> a
a -> a + a
exc + a -> a + a + exc
inh + a -> inh
```

\{1\}
\{bias\}
\{pw\}
\{nw\}

Nanoscale artificial intelligence: creating artificial neural networks using autocatalytic reactions

Conclusions

- Programming chemistry is fun. But it is no fun without modularization! Chemical reactions provide a nice almost-high-level language if properly modularized.
- There will always be "cheaper" ways of implementing those programs by direct "low-level chemical hacking" (c.f. trade-off between high-level and assembly languages).
- But a compiler could optimize higher-level programs for specific architectures (e.g. DNA strand displacement).
- There are already higher-level languages. Synthetic biology "programs" (gene assemblies) can be compiled from libraries of standard parts into molecules (plasmids). Chemical reactions there figure prominently as an "intermediate language" between gene specification and analysis.
- Control of biochemical "plants" is a major issue in synthetic biology.

